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Abstract 
Wheat was one of the most widely cultivated and economically significant staple crops globally. Wheat flour 

was a primary ingredient in various foods, with its quality commonly described by parameters such as moisture, 

protein, starch, ash, gluten content, and gelatinization characteristics. Understanding these parameters was 

essential for assessing wheat flour's processing suitability and selecting the appropriate wheat flour type for 

specific food formulations. This study leverages hyperspectral imaging (HSI) technology to predict the 

gelatinization characteristics of wheat flour, using peak viscosity as a key indicator. Partial Least Squares 

Regression (PLSR), Principal Component Regression (PCR), and Support Vector Machine Regression (SVMR) 

models were established based on raw spectral data and nine different preprocessing methods. Among these, the 

Standard Normal Variate (SNV) preprocessing method yielded the best prediction results. Considering model 

speed, robustness, and stability, the optimal model for predicting wheat flour peak viscosity was the 

SNV-IVISSA-IRIV-SVMR, achieving R² = 0.8955 and RMSEP = 115.4859 cP. This approach enables accurate 

prediction of wheat flour gelatinization characteristics, offering valuable theoretical support for wheat flour 

processing and manufacturing. 
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I. Introduction 
Wheat is an economically important crop for both human consumption and animal feed [1]. Wheat flour is a 

key ingredient in various food products, with quality parameters such as protein, starch, moisture, gluten, ash, 

fat content, and gelatinization characteristics being critical indicators of its quality [2,3]. Understanding these 

parameters is essential for evaluating the processing characteristics of wheat flour and selecting the appropriate 

type for different food formulations. These parameters are closely linked to the processing properties and 

nutritional quality of wheat flour. As noted, protein, starch, moisture content, gelatinization characteristics, and 

deoxynivalenol levels significantly impact the final cost, processing suitability, and storage stability of wheat 

flour [4]. Traditional chemical testing methods, while accurate and reliable, are destructive and 

resource-intensive, particularly when analyzing large sample volumes, requiring substantial time, labor, and 

chemical usage. Therefore, there is a need to develop an efficient, cost-effective, non-destructive, and accurate 

quality evaluation system for the food industry. 

In recent years, spectroscopic analysis techniques have been widely employed for quality assessment of 

agricultural products. Wang et al. [5] utilized hyperspectral imaging (HSI) to extract average spectral data from 

millet flour, employing the Sparrow Search Algorithm (SSA) to optimize the Backpropagation (BP) algorithm 

for predicting gelatinization characteristics, taking peak viscosity as an example. Results demonstrated that the 

SSA-optimized BP algorithm enhanced prediction accuracy for millet flour gelatinization properties, reducing 

the mean square error (MSE) from 0.0266 to 0.0175 compared to the BP algorithm alone. This study provides 

theoretical support for the use of HSI combined with deep learning to predict gelatinization characteristics in 

millet flour. Wu et al. [6] acquired diffuse reflectance spectra of millet in the 370-1020 nm range and used a 

Rapid Visco Analyzer (RVA) to measure seven gelatinization indices. Following spectral preprocessing with 

Savitzky-Golay (SG) smoothing, Multiplicative Scatter Correction (MSC), and first derivative transformation, 

the authors employed the Successive Projections Algorithm (SPA) to select feature wavelengths and establish a 

Multiple Linear Regression (MLR) model. 

For peak viscosity, minimum viscosity, and setback values, 9, 17, and 18 feature wavelengths were extracted, 

yielding predictive correlation coefficients (RP) of 0.9347, 0.8255, and 0.8746, respectively. This study 

demonstrated that visible-near infrared (VIS-NIR) spectroscopy can effectively assess millet gelatinization 

characteristics in a non-destructive manner, indicating potential for practical applications. Spectroscopic 
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analysis offers advantages of speed and non-destructiveness, overcoming the limitations of traditional 

destructive testing methods. In recent years, hyperspectral imaging (HSI) has emerged as a highly promising 

technology for non-invasive, contamination-free quality evaluation of food products [7-9]. Combining the 

benefits of spectroscopy and imaging, HSI can simultaneously capture the physical and chemical information of 

wheat flour. 

HSI technology operates across a wide spectral range (780-2500 nm), with the specific range of 900-2300 nm 

known as near-infrared hyperspectral imaging (NIR-HSI). Near-infrared spectroscopy establishes the 

relationship between spectral data and detection indices based on the interaction of light radiation with a sample, 

particularly through the absorption of molecular overtone and combination vibrations [10-11]. NIR-HSI extracts 

spatial and spectral information from captured images, providing a characteristic chemical map for each pixel 

associated with this information. By acquiring a three-dimensional data matrix containing thousands of 

consecutive images, narrowband spectra, and two-dimensional spectral information, NIR-HSI overcomes the 

limitations of traditional spectroscopy [12-13]. 

This study focuses on various wheat flour types, aiming to develop a non-destructive method for detecting 

wheat flour gelatinization characteristics using HSI technology. Gelatinization characteristics of different wheat 

flour varieties were measured with a Rapid Visco Analyzer (RVA), using peak viscosity as a key indicator for 

prediction. Prediction models were established by integrating spectral data, including models based on raw 

spectral data as well as models using preprocessed data. Feature wavelength extraction algorithms—such as the 

Successive Projections Algorithm (SPA), Competitive Adaptive Reweighted Sampling (CARS), Uninformative 

Variable Elimination (UVE), Interval Variable Iterative Space Shrinking Analysis (IVISSA), and Iterative 

Retain Information Variable (IRIV)—were applied to develop the optimal prediction model. This approach 

effectively predicts peak viscosity and enables accurate detection of gelatinization characteristics in wheat flour. 

 

II. Materials And Methods 
Sample preparation 

In this experiment, a total of 77 wheat flour varieties were collected, of which 65 were cultivated by 

Shandong Seed Industry Group Co., Ltd., and 12 were purchased from major supermarkets in Zibo. Each wheat 

flour type was divided into six parallel samples. Six 300-gram samples were taken from each variety and placed 

in six clean petri dishes. After capturing hyperspectral images, each parallel sample was divided into three equal 

parts by weight. Gelatinization characteristics were measured using a Rapid Visco Analyzer (RVA), with each 

parameter measured three times to calculate an average value. Consequently, 462 wheat flour samples were 

analyzed, and a library of 462 hyperspectral wheat flour images was constructed. 

 

Hyperspectral image acquisition 

Hyperspectral images of the samples were acquired in reflection mode using a laboratory line-scan NIR-HSI 

system (spectral range: 900-2500 nm) [14]. A charge-coupled device (CCD) camera was used to capture 

two-dimensional images of the samples by translating the sample across the objective stage. This setup enabled 

the collection of spatial and spectral information along the spatial-spectral axis based on the reflected light from 

the samples. The HSI system included a dark chamber, motorized translation stage, near-infrared spectrometer, 

CCD camera, halogen lamps, and a computer. 

 

Black and white calibration 

To remove irrelevant interference and stabilize the acquired spectral data, black and white calibration was 

performed. The spectral information of a white reference panel with 0.99 reflectance (Specim, Finland) was 

recorded as 𝐼white. Additionally, spectral data were collected with the CCD camera lens covered to obtain Idark 
[15]. The calibration was calculated using the following formula: 

𝑅𝑇 =
𝐼raw − 𝐼dark

𝐼white − 𝐼dark

             (1) 

where 𝑅𝑇 represents the calibrated image, Iraw is the original sample image, and Iwhite and Idark  are the 

images after white and dark calibration, respectively. 

 

Spectral information acquisition and region of interest (ROI) extraction 

During sample scanning, equipment adjustments began once the machine temperature reached -60, setting the 

exposure time to 2.6 ms, the translation stage speed to 13.50 mm/s, and the CCD camera resolution to 384 × 

288. For spectral information extraction from wheat flour samples, a masking method was employed to separate 

wheat flour from the image background. Given the clear spectral contrast between wheat flour and the 

background, a single-band grayscale image at 1340 nm was used to establish a mask template for the 

near-infrared hyperspectral image. The OTSU method was applied for threshold segmentation of the captured 

images [16]. A binary mask was then created for each sample, assigning pixel values of 0 and 1 to represent 
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background and wheat flour, respectively. The mean spectral value was calculated for each wheat flour pixel, 

yielding an average spectrum per image, resulting in a total of 462 samples. The spectral information from the 

wheat flour samples was then concatenated to form the final spectral matrix for model development, with rows 

and columns representing the number of wheat flour images and wavelengths, respectively. 

 

Sample set division 

The wheat flour samples were divided into calibration and prediction sets for multivariate data analysis. The 

calibration set was used to optimize and build the quantitative model, while the prediction set was used to 

validate the reproducibility of the optimized results and the developed quantitative model [17]. The 

Kennard-Stone (KS) algorithm was applied to split the sample set at a 3:1 ratio, maximizing the euclidean 

distance between system responses for even coverage across multidimensional space. Consequently, 347 

samples were selected as the calibration set, and the remaining 115 samples were used as the prediction set. The 

peak viscosity distribution of gelatinization characteristics in the calibration and prediction sets is shown in 

Table 1. The calibration set encompassed the variation range of the prediction set samples. These results 

indicate that the sample set division method was reasonable, providing a representative sample selection for 

model construction. 

 

Table 1 Statistics reference measurement results of gelatinization properties in wheat flour of the 

calibration and prediction sets 

Subsets 
No. of 

samples 
Min Max Mean SD SEM CV 

Total 462 1681 2956 2583 321.4353 7.8195 0.1244 

Calibration set 347 1681 2956 2607 304.5186 5.9117 0.1168 

Prediction set 115 1713 2880 2510 364.0376 8.7956 0.145 

 

III. Results And Discussions 
Modeling analysis based on full wavelengths and data preprocessing 

PLSR, PCR, and SVMR models were developed based on the full-spectrum data of wheat flour and its 

preprocessed spectral data. The parameters of each model are presented in Table 2. Results indicate that the 

SVMR model based on full-wavelength data demonstrated superior predictive performance, with R2
C, R2

CV and 

R2
P values of 0.9782, 0.8706, and 0.8058, respectively, and corresponding RMSEC, RMSECV, and RMSEP 

values of 52.1031 cP, 111.0163 cP, and 157.4127 cP. After SNV preprocessing, the predictive performance of 

the SVMR model was significantly enhanced, yielding R2
C, RMSEC, R2

CV, RMSECV, R2
P, and RMSEP values 

of 0.9570, 65.6612 cP, 0.7432, 153.6963 cP, 0.8920, and 117.3760 cP, respectively. Compared to the model 

based on raw spectral data, the prediction set R2
P improved by 0.0844, effectively increasing the model's 

accuracy. Therefore, SNV preprocessing was used for subsequent experiments. 

 

Table 2 The result of PLSR、PCR and SVMR based on different pre-processing methods in predicting 

peak viscosity 

Model pre-processing methods R2
C RMSEC /cP R2

CV 
RMSECV 

R2
P 

RMSEP 

/cP /cP 

PLSR 

None 0.9313 79.3304 0.7627 149.8175 0.7289 185.9738 

Detrending 0.9077 91.9246 0.7044 165.5892 0.7728 170.2571 

FD 0.6495 179.1629 0.5642 204.5978 0.6267 218.2522 

SD 0.6774 171.8794 0.4984 217.6691 0.5667 235.1208 

SNV 0.9279 81.2756 0.7751 145.0637 0.7719 170.6017 

MSC 0.9268 81.9037 0.7808 144.8999 0.7621 174.2328 

FD-SNV 0.9299 80.1498 0.6239 189.5893 0.6468 212.2748 

SNV-FD 0.9296 80.2648 0.6433 183.4284 0.6094 223.2480 

SNV-Detrending 0.9054 93.0671 0.7302 158.0111 0.7878 164.5480 

SD-SNV 0.8609 112.8775 0.5519 204.3773 0.6842 200.7402 

PCR 

None 0.6280 184.5900 0.5488 203.8849 0.6223 219.5201 

Detrending 0.6335 183.2011 0.5707 202.4706 0.6069 223.9489 

FD 0.6510 178.7808 0.5510 204.5078 0.6249 218.7734 

SD 0.6291 184.3158 0.4762 222.9345 0.5341 243.8028 

SNV 0.6678 174.4241 0.5783 197.6978 0.6495 211.4684 

MSC 0.7422 153.6535 0.5999 193.2639 0.6761 203.2364 

FD-SNV 0.6372 182.2726 0.4723 223.6384 0.5357 260.5196 

SNV-FD 0.6963 166.7817 0.4875 218.3449 0.4843 256.5152 

SNV-Detrending 0.7299 157.2847 0.6010 196.3128 0.6432 213.362 

SD-SNV 0.7181 160.6826 0.4956 217.5309 0.4776 258.1803 

SVMR None 0.9782 52.1031 0.8760 111.0163 0.8058 157.4127 
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Detrending 0.9288 84.1537 0.7796 143.1009 0.8306 147.0324 

FD 0.9738 52.8195 0.7355 155.7700 0.8837 121.7984 

SD 0.9700 58.8465 0.5574 201.5496 0.6654 206.6321 

SNV 0.9570 65.6612 0.7432 153.6963 0.8920 117.3760 

MSC 0.9546 67.8642 0.7501 151.4112 0.8890 119.02178 

FD-SNV 0.9745 55.3020 0.6975 166.7762 0.6462 212.4691 

SNV-FD 0.9749 55.1437 0.7139 162.2037 0.8572 134.9733 

SNV-Detrending 0.9694 54.9476 0.7705 145.5996 0.8847 121.2632 

SD-SNV 0.9720 57.5889 0.5501 203.4631 0.6934 197.7798 

 

Feature wavelength extraction 

Hyperspectral image data were characterized by high dimensionality and multicollinearity among bands, 

containing substantial noise and redundant information. This volume of data requires complex computations, 

adding strain to the model used for analysis. To improve computational speed, enhance predictive accuracy, and 

reduce processing time, dimensionality reduction was commonly applied, where specific sensitive or feature 

wavelengths were selected from the entire spectral matrix to compress the hyperspectral information  [18,19]. 

Feature wavelengths were extracted using SPA, CARS, UVE, IVISSA, and IRIV methods. 

 

Extraction of feature wavelengths based on the SPA algorithm 

The SPA was widely applied for selecting feature wavelengths in hyperspectral data [20]. SPA minimizes 

multicollinearity in the vector space and eliminates redundant information from the spectral matrix. The optimal 

wavelengths were determined by the subset with the minimum RMSE when calculating the model’s RMSE 

using the SPA algorithm [21]. As shown in Fig. 1(a), the RMSE curve initially drops sharply as the number of 

selected feature wavelengths increases from 1 to 21. The optimal wavelength position (highlighted in a red box) 

was reached at 21 wavelengths, corresponding to a minimum RMSE of 116.4289 cP. Fig. 1(b) illustrates the 

distribution of these 21 selected feature wavelengths, with the x-axis representing the wavelength indices and 

the y-axis showing reflectance. The selected feature wavelengths were 969, 976, 994, 1032, 1101, 1133, 1258, 

1333, 1352, 1383, 1421, 1464, 1599, 1690, 1791, 1867, 1924, 2052, 2090, 2122, and 2164 nm, comprising 

10.34% of all bands. 

 

 
Fig. 1 Selected feature wavelengths by SPA of peak viscosity in wheat flour 

(a: RMSE growth pattern of variable, b: sequence number of selected feature wavelengths) 

 

Extraction of feature wavelengths based on the CARS algorithm 

To reduce irrelevant spectral information, the CARS algorithm was used to extract feature wavelengths for 

wheat flour peak viscosity. Spectral data from samples in the calibration set with high peak viscosity were 

treated as input values. Monte Carlo sampling was performed 250 times, with the number of selected 

wavelengths determined by RMSECV. Fig. 2 shows the variation trends of the number of wavelengths, 

RMSECV, and regression coefficient paths as Monte Carlo sampling iterations increase. The feature wavelength 

extraction process via CARS can be divided into two steps: coarse selection and fine selection (Fig. 2(a)). When 

the number of iterations was below 80, the number of variables decreases sharply; beyond 80, it stabilizes [22]. 

The RMSECV decreases as irrelevant wavelengths were removed over iterations 1–80 (Fig. 2(b)), then shows 

slight variation between iterations 80–91. At 91 iterations, RMSECV reaches its lowest value of 166.9 cP. 

Beyond 91 iterations, RMSECV increases rapidly due to the removal of wavelengths relevant to peak viscosity, 

thus stopping the process at this point. In Fig. 2(c), each line represents the regression coefficient path of each 

variable across sampling iterations. Initially, all regression coefficients were near zero; sampling stops at 
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iteration 91, where RMSECV was minimized at the * position, as continuing further would remove useful 

variables. Consequently, 38 feature wavelengths were selected at 91 iterations (969, 976, 982, 988, 1070, 1076, 

1082, 1164, 1170, 1177, 1183, 1189, 1346, 1352, 1371, 1377, 1383, 1396, 1402, 1408, 1415, 1421, 1427, 1483, 

1489, 1495, 1501, 1726, 1809, 1815, 1826, 1941, 2079, 2090, 2101, 2133, 2143, and 2169 nm), representing 

18.72% of the total bands. 

 

 
Fig. 2 The process of screening feature wavelengths by CARS of peak viscosity in wheat flour 

(a: the number of selected wavelengths in the change process diagram of CARS algorithm, b: RMSECV value 

changes with the sampling runs, c: the change process of regression coefficient of each variable with sampling 

times) 

 

Extraction of feature wavelengths based on the UVE algorithm 

The UVE algorithm was a variable selection method based on the stability analysis of PLS regression 

coefficients. It evaluates the stability of each wavelength by analyzing the corresponding regression coefficients 

in the PLS model, then removes wavelength variables with low absolute correlation coefficients [23]. Fig. 3 

demonstrates the stability values of the extracted variables for peak viscosity in wheat flour, with the two 

horizontal dashed lines indicating the cutoff thresholds. Wavelengths with stability values within these 

thresholds were excluded as independent variables. The remaining variables, considered relevant, were retained 

as inputs for the regression model. In this study, UVE selected 47 feature variables from the original 203 

wavelengths, representing 23.15% of the total spectral bands. 

 

 
Fig. 3 The process of screening feature wavelengths by UVE of peak viscosity in wheat flour 

 

Extraction of feature wavelengths based on the IVISSA-IRIV algorithm 

Relevant wavelengths for peak viscosity in wheat flour were extracted using the IVISSA algorithm, with the 

process illustrated in Fig. 4. Fig. 4(a) shows the trend of RMSECV over the iterative process, where, after 29 

iterations, the RMSECV value decreased to 106.7749 cP, retaining 88 feature wavelengths. The relatively large 

number of selected wavelengths slowed the model’s computational efficiency, making it less conducive to 

simplification. Therefore, the IRIV algorithm, which performs well in refinement, was applied in combination 

to further optimize wavelength selection. This combined IVISSA-IRIV algorithm was employed to extract key 
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wavelengths associated with wheat flour’s peak viscosity. Fig. 4(b) presents the optimal set of 20 feature 

wavelengths, specifically 982, 1076, 1082, 1383, 1390, 1396, 1402, 1408, 1415, 1720, 1844, 1849, 1855, 1861, 

1867, 2079, 2101, 2143, and 2164 nm, which account for 9.85% of the total spectral bands. 

 

 
Fig. 4 IVISSA and IVISSA-IRIV algorithms to select feature wavelengths of peak viscosity in wheat flour 

(a: variation trend of RMSECV during iterations; b: sequence number of selected feature wavelengths) 

 

Comparison of Optimal Modeling Performance 

PLSR, PCR, and SVMR models were constructed using full-spectrum data and spectra with different 

preprocessing methods. Model performance comparisons showed that SNV preprocessing significantly 

improved model accuracy. Following feature wavelength extraction with five algorithms—SPA, CARS, UVE, 

IVISSA, and IVISSA-IRIV—the performance of each model was assessed (Table 3). The SVMR model based 

on SNV preprocessing and UVE extraction of 47 feature wavelengths demonstrated the best predictive 

performance, achieving R2
P = 0.9174 and RMSEP = 102.6580 cP. Comparison with the 

SNV-IVISSA-IRIV-SVMR model indicated that the IVISSA-IRIV algorithm, selecting 20 relevant 

wavelengths for peak viscosity, achieved R2
P = 0.8955 and RMSEP = 115.4859 cP. This approach substantially 

reduced the number of feature wavelengths while maintaining robust model accuracy. Considering model 

processing speed and simplification, the SNV-IVISSA-IRIV-SVMR model was identified as the optimal model 

for characterizing wheat flour pasting properties. 

 

Table 3 the result of PLSR, PCR and SVMR based on different feature wavelengths selection methods in 

predicting peak viscosity 

feature 

wavelengths 

selection methods 

Model 

No.. of 

wavele-n

gths 

R2
C 

RMSEC 
/cP 

R2
CV 

RMSECV 
/cP 

R2
P 

RMSEP 
/cP 

SPA 

PCR 21 0.8583 113.9354 0.7232 161.5495 0.7339 184.2757 

PLSR 21 0.9040 93.7579 0.7905 139.5414 0.8404 142.7217 

SVMR 21 0.9811 49.2858 0.8441 122.4416 0.8080 156.4784 

CARS 

PCR 38 0.7745 143.6971 0.7129 164.0867 0.6400 214.3074 

PLSR 38 0.8428 120.0017 0.6926 167.6181 0.6371 215.1660 

SVMR 38 0.9794 54.8542 0.8010 137.5365 0.7938 162.2178 

UVE 

PCR 47 0.4875 216.6452 0.4581 226.9932 0.4812 257.2741 

PLSR 47 0.7327 156.4678 0.5717 202.7371 0.7003 188.9232 

SVMR 47 0.9654 56.5213 0.8304 127.7976 0.9174 102.6580 

IVISSA 

PCR 88 0.9009 95.2924 0.8257 127.9596 0.6641 207.0222 

PLSR 88 0.9129 89.3135 0.8230 128.2065 0.7009 195.3605 

SVMR 88 0.9694 53.0883 0.8595 114.4387 0.8530 136.9466 

IVISSA-IRIV 

PCR 20 0.7047 164.4472 0.6673 174.4451 0.6612 207.9132 

PLSR 20 0.7080 163.5217 0.6526 180.4952 0.6608 208.0456 

SVMR 20 0.9298 85.0579 0.8185 132.3895 0.8955 115.4859 

 

IV. Conclusions 
In this study, peak viscosity was used as the characteristic index for wheat flour pasting properties. The 

original spectral data were preprocessed using nine different methods, with SNV preprocessing found to be the 
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most effective. To simplify model processing, five feature wavelength extraction methods—SPA, CARS, UVE, 

IVISSA, and IVISSA-IRIV—were applied, extracting 21, 38, 47, 88, and 20 feature wavelengths relevant to 

peak viscosity, respectively. A comprehensive comparison of model performance in terms of computation speed 

and stability led to the selection of the SNV-IVISSA-IRIV-SVMR model as the optimal model for wheat flour 

pasting properties, achieving R2
P = 0.8955 and RMSEP = 115.4859 cP. Using hyperspectral imaging technology 

to predict wheat flour pasting characteristics, with peak viscosity as a key index, holds significant potential for 

optimizing wheat flour processing properties, classification performance, and the selection of suitable wheat 

flour for specific products. Near-infrared hyperspectral imaging offers advantages of being non-destructive, fast, 

accurate, and stable, and it shows great promise for applications in non-destructive testing of agricultural 

products. 

 

Acknowledgements 
This research was financially supported by the Key Research and Development Program of Shandong 

Province (Major Scientific and Technological Innovation Project, No. 2020CXGC0108053). 

 

References 
[1] Li S, Luo J, Zhou X, Et Al. Identification Of Characteristic Proteins Of Wheat Varieties Used To Commercially Produce Dried 

Noodles By Electrophoresis And Proteomics Analysis[J]. Journal Of Food Composition And Analysis, 2021, 96: 103685. 
[2] Mæhre H, Dalheim L, Edvinsen G, Et Al. Protein Determination—Method Matters[J]. Foods, 2018, 7(1): 5. 

[3] Tian W, Chen G, Zhang G, Et Al. Rapid Determination Of Total Phenolic Content Of Whole Wheat Flour Using Near-Infrared 

Spectroscopy And Chemometrics[J]. Food Chemistry, 2021, 344: 128633. 
[4] Caporaso N, Whitworth M B, Fisk I D. Protein Content Prediction In Single Wheat Kernels Using Hyperspectral Imaging[J]. Food 

Chemistry, 2018, 240: 32–42. 

[5] Wang G, Wang W, Cheng K,Et Al. Hyperspectral Imaging Combined With Back Propagation Neural Network Optimized By 
Sparrow Search Algorithm For Predicting Gelatinization Properties Of Millet Flour[J]. Food Science, 2022, 43(19):65-70. 

[6] Wu J, Li G, Peng Y, Et Al. Detection Of Gelatinization Properties Of Millet Using Visible/Near Infrared Reflectance 

Spectroscopy[J]. Spectroscopy And Spectral Analysis, 2020, 40(10): 3247–3253. 
[7] Srivastava S, Mishra H N. Detection Of Insect Damaged Rice Grains Using Visible And Near Infrared Hyperspectral Imaging 

Technique[J]. Chemometrics And Intelligent Laboratory Systems, 2022, 221: 104489. 

[8] M. Elmasry G, Nakauchi S. Image Analysis Operations Applied To Hyperspectral Images For Non-Invasive Sensing Of Food 
Quality–A Comprehensive Review[J]. Biosystems Engineering, 2016, 142: 53–82. 

[9] Mo C, Kim G, Kim M S, Et Al. Discrimination Methods For Biological Contaminants In Fresh-Cut Lettuce Based On Vnir And Nir 

Hyperspectral Imaging[J]. Infrared Physics & Technology, 2017, 85: 1–12. 
[10] Huan K, Chen X, Song X, Et Al. Variable Selection In Near-Infrared Spectra: Application To Quantitative Non-Destructive 

Determination Of Protein Content In Wheat[J]. Infrared Physics & Technology, 2021, 119: 103937. 

[11] Ravikanth L, Jayas D S, White N D G, Et Al. Extraction Of Spectral Information From Hyperspectral Data And Application Of 
Hyperspectral Imaging For Food And Agricultural Products[J]. Food And Bioprocess Technology, 2017, 10(1): 1–33. 

[12] Liu C, Huang W, Yang G, Et Al. Determination Of Starch Content In Single Kernel Using Near-Infrared Hyperspectral Images 

From Two Sides Of Corn Seeds[J]. Infrared Physics & Technology, 2020, 110: 103462. 
[13] Ma J, Cheng J-H, Sun D-W, Et Al. Mapping Changes In Sarcoplasmatic And Myofibrillar Proteins In Boiled Pork Using 

Hyperspectral Imaging With Spectral Processing Methods[J]. Lwt, 2019, 110: 338–345. 

[14] Srivastava S, Mishra H N. Detection Of Insect Damaged Rice Grains Using Visible And Near Infrared Hyperspectral Imaging 
Technique[J]. Chemometrics And Intelligent Laboratory Systems, 2022, 221: 104489. 

[15] Huan K, Chen X, Song X, Et Al. Variable Selection In Near-Infrared Spectra: Application To Quantitative Non-Destructive 

Determination Of Protein Content In Wheat[J]. Infrared Physics & Technology, 2021, 119: 103937. 
[16] Zhang J, Guo Z, Ren Z, Et Al. Rapid Determination Of Protein, Starch And Moisture Content In Wheat Flour By Near-Infrared 

Hyperspectral Imaging[J]. Journal Of Food Composition And Analysis, 2023, 117: 105134. 

[17] Achata E M, Esquerre C, Ojha K S, Et Al. Development Of Nir-Hsi And Chemometrics Process Analytical Technology For Drying 
Of Beef Jerky[J]. Innovative Food Science & Emerging Technologies, 2021, 69: 102611. 

[18] Jin H, Li L, Cheng J. Rapid And Non-Destructive Determination Of Moisture Content Of Peanut Kernels Using Hyperspectral 

Imaging Technique[J]. Food Analytical Methods, 2015, 8(10): 2524–2532. 
[19] Sun J, Wang G, Zhang H, Et Al. Detection Of Fat Content In Peanut Kernels Based On Chemometrics And Hyperspectral Imaging 

Technology[J]. Infrared Physics & Technology, 2020, 105: 103226. 

[20] Araújo M C U, Saldanha T C B, Galvão R K H, Et Al. The Successive Projections Algorithm For Variable Selection In 

Spectroscopic Multicomponent Analysis[J]. Chemometrics And Intelligent Laboratory Systems, 2001, 57(2): 65–73. 

[21] Yu K-Q, Zhao Y-R, Liu Z-Y, Et Al. Application Of Visible And Near-Infrared Hyperspectral Imaging For Detection Of Defective 

Features In Loquat[J]. Food And Bioprocess Technology, 2014, 7(11): 3077–3087. 
[22] Wang Z, Fan S, Wu J, Et Al. Application Of Long-Wave Near Infrared Hyperspectral Imaging For Determination Of Moisture 

Content Of Single Maize Seed[J]. Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy, 2021, 254: 119666. 
[23] Wang Z, Chen J, Fan Y, Et Al. Evaluating Photosynthetic Pigment Contents Of Maize Using Uve-Pls Based On Continuous 

Wavelet Transform[J]. Computers And Electronics In Agriculture, 2020, 169: 105160. 

 

 


